
4th SEAS DTC Technical Conference - Edinburgh 2010

Safety Lifecycle Activities for Autonomous Systems Development

Robert Alexander, Tim Kelly
Department of Computer Science, University of York

Heslington, York, YO10 5DD

Ben Gorry
BAE Systems Military Air Solutions,

Warton Aerodrome, Preston, Lancashire, PR4 1AX

Abstract

Current safety lifecycles do not deal well with the challenges of new and rapidly advancing
technologies. As autonomous systems are such a technology, an alternate lifecycle model is
required. This paper outlines a lifecycle model based on an iterative, exploratory approach,
and identifies a range of evidence sources that can be used at the various stages of the
lifecycle.

Keywords : safety, certification, lifecycle, evidence, safety cases

Introduction

In our previous work for the SER011
project ([1-3]), we addressed the AS safety
lifecycle as far as top-level objectives and
hazard analysis. In this paper we provide
guidance for later stages of the lifecycle
further through the lifecycle, as far as
confirmatory safety analysis and the
accompanying gathering of evidence for
certification.

There are many existing models of safety
lifecycles. However, AS are difficult for a
number of reasons, not least that they use
novel and rapidly advancing technology.
The development of AS is therefore
attended by a high degree of uncertainty
about what is possible and what can be
made safe. In this paper, we present a
lifecycle model that makes allowance for
this uncertainty, and allows AS developers
to manage their commitment in the face of
rapid change in methods, technologies,
requirements and doctrine.

The next section defines what we mean by
a "safety lifecycle" - experienced safety
engineers may want to skip this. The

section after explains what it is about AS
that makes the safety lifecycle difficult.
This is followed by a description of our
proposed lifecycle. There is then a section
on the different ways we can get safety
evidence across the different stages of the
lifecycle. Finally, we present some
conclusions.

Safety Lifecycles in General

Put simply, a safety lifecycle is a
description of the safety activities
performed on a system over its lifetime.
Ideally, this consideration should be cradle-
to-grave; from first concept to final
decommissioning. In this paper, however,
we will restrict ourselves to activities up to
release to service; we will exclude those
activities that take place after the system is
in the field.

A safety lifecycle happens in parallel with
the main development lifecycle for the
system, which is a description of all the
other activities carried out to develop the
system. To carry out safety lifecycle
activities one must relate them to the
development lifecycle. In order to keep this
paper relevant to range of development



4th SEAS DTC Technical Conference - Edinburgh 2010

lifecycles, we will not overly labour this
relationship, but we will observe where the
safety process has implications for
development.

As engineers progress through the lifecycle,
they are working on several fronts. For one,
they are moving from a basic understanding
of the system to a more sophisticated one.
Secondly, they are moving from generating
an in-house assessment of whether the
system can be made safe to actually
creating certification evidence. Finally,
they are generally increasing the level of
detail they are using their our model of the
system; the object of analysis moves
concept to architecture to design to actual
implementation details. These activities do
not have to proceed in lock-step, but for
this paper we will assume that they move
forward together.

It is worth noting the difference between a
safety lifecycle and a safety process – a
lifecycle is a high level description of the
types of activities involved, whereas a
process gives specific prescriptions as to
what engineers should do. In this paper we
have taken middle road: we describe a
high-level lifecycle to which many safety
processes could be fitted, and give some
specific suggestions for techniques that
could be used in that process. Def Stan 00-
56 allows developers a wide range of
different safety processes, and we have
tried to support that flexibility while still
giving some guidance.

There are many possible lifecycles, and
several lifecycle models have been
described, such as the safety variant of the
“V” model given by Pumfrey in [4]. This is
reproduced in Figure 1.

Requirements
analysis and
specification

Detailed
design

Implementation

Integration

Testing, V&V

Delivery and
commissioning

Architectural
design

Hazard
Identification

PSSA
(Predictive
analyses to

refine
requirements

and guide
design)

SSA
(Analyses
confirming
achieved

safety
properties)

Risk
Assessment

Delivery of
safety case

Common cause / common
mode and zonal analyses

Figure 1 - Pumfrey's ‘V’ Model (reproduced
from [4])

At a minimum, a safety lifecycle must in
some way contain the core safety activities
that are shown in Table 1. Note that this
table is not in any sense a lifecycle
description - it makes no attempt to show
how the activities interrelate, are positioned
in time, or relate to the development
lifecycle.

Table 1 – Minimum Lifecycle Activities

Activity Role Inputs

Hazard
Analysis
(FHA)

Derive hazards
of conceptual
system

Function/capability
model of AS

Preliminary
System
Safety
Analysis
(PSSA)

Early on,
evaluate
potential for
system to be
made safe

An architectural
design (an
allocation of
functions to
components)

System
Safety
Analysis
(SSA)

Get
confirmatory
evidence of
safety

A detailed design
(how the
architecture will be
implemented)

Particular
Risk
Analysis
(PRA) and
Common
Cause
Analysis
(CCA)

Handle risks
coming out of
implementation
details

(ongoing in
parallel with
PSSA and SSA)

(as each parallel
stage)

Safety Case Produce a Detailed design,



4th SEAS DTC Technical Conference - Edinburgh 2010

Development safety case analysis plan, and
confirmatory
safety evidence

Safety Challenges Posed by AS

There are several safety challenges for AS
that are particularly relevant to the safety
lifecycle.

First, engineers rely on getting precise,
complete specifications for the systems
they are working with. AS are problematic
in that we are often forced to start with a
partial specification. Realistically, we will
only reach sufficiently developed
specifications through prototyping and
trials.

Second, safety relies heavily on predicting
system behaviour, but AS make it hard to
do this. Partly, this problem stems from
novel technologies (see below) but it is also
caused by reliance on emergent behaviour
and the system architectures that that leads
to. This reliance on emergent behaviour
means that we will stop decomposing
functions at a much higher level than we
have traditionally. The resulting
architecture will allow many components
and a large amount of software to impact
any given requirement at that level.

Third, AS are inherently very sensitive to
their operating environment. In inhabited
vehicles and human-operated system, much
of the interpretation of the environment has
been done by the human – they observe the
objects in the environment (either directly
or via artificial sensors) and make decisions
about how to respond. AS will have to do
much of this on their own.

Many current safety processes make little
reference to environment modelling. Partly,
this stems from the expectation of a well
understood, well regulated and relatively
predictable environment (e.g. the public
roads for MISRA [5] and international
controlled airspace for ARP 4754 [6]).

Fourth, introducing a new AS will
inevitably have an impact on the humans
who have to interact with it. This is
particularly true when the AS replaces a
traditionally human role, as in many UAV
deployments. Many current safety
processes pay little attention to modelling
the human side of the system and its
environment. It is either ignored entirely
(e.g. in [7]) or only mentioned in passing
(e.g. in ARP 4754, where it is relegated to a
single paragraph (7.5.2.a) under
"Validation of Requirements").

Fifth, AS certification requires high levels
of assurance. In many AS deployments,
either the problem, or the solution, or both,
is unfamiliar. According to the McDermid
Square from Def Stan 00-56 [8], it is this
case (unfamiliar solutions to unfamiliar
problems) that requires the highest
assurance.

In those cases where the AS replaces an
existing human-operated system (i.e. the
problem is familiar) developers and
operators may still need to give very high
assurance of safety. This is because AS
control systems may be held to the high
standards required of machines, rather than
the (often lower, often "grandfathered in")
standards required of humans.

Finally, AS often depend on novel
technologies. We discussed this in our
earlier papers [1-3], and noted that any
given new technology may not be amenable
to the analyses we need for safety. It may
be that we can make the technology work
in a functional sense, but cannot be
confident that it will remain safe. Novel, in
this case, may include technologies that
have been widely used in other domains but
have never seen safety-critical use before.

One aspect that we have not mentioned
before is the use of existing technologies in
new roles. For example, we may want to
take a sensor unit that has been used on
inhabited aircraft and attach it to a UAV. If



4th SEAS DTC Technical Conference - Edinburgh 2010

the role is the same (e.g. it only provides a
surveillance video feed to a remote
observer) then this may be easy to argue.
However, on the UAV it may have a
different role (e.g. the remote operator will
use it to help their navigation of the UAV)
or a different user (e.g. the video will be
used directly by the UAV for autonomous
navigation). In these different use cases, the
technology may have new requirements
that are hard to meet.

Proposed Lifecycle

Project risk in safety stems primarily from
certification risk. This, in term, stems from
several sub-types of risk:

 The risk that we won't be able to create a
safe system

 The risk that we won't be able to provide
a compelling safety case even though
our system is safe

 The risk that our specific regulator will
reject our safety case even though it is
compelling to a general safety
engineering audience

When we start out on a development
project, we can't assess these risks
accurately. We therefore need to take steps
to refine our knowledge before we commit
to a project. This management of
commitment is at the heart of Boehm's
Incremental Commitment model [9], a
systems engineering process model that
emphasises managing developer
commitment before the risks of the project
are understood. Adapting this idea from the
ICM, we can propose a core safety process
that lets us manage our commitment.

Figure 2 illustrates our process graphically
in terms of the standard activities from
Table 1. Starting with an idea, we conduct
an initial hazard analysis and then proceed
to PSSA. We iterate PSSA, changing our
system concept, our system design and our

analysis techniques each time, until we
reach a point where we are satisfied that we
can manage all risks and create appropriate
certification evidence. At that point, we
fully commit to the project and attempt to
build and certify our product.

Figure 2 – Summary of Our Approach

At the start of each iteration, the developer
needs to determine what information is
most important to acquire in this iteration.
Information may concern design, safety
risks, potential for analysis, or any other
factor of concern. In the initial iteration this
will be a pure judgement call; in later
iterations it should follow from analysis of
the nascent safety case. In every case, the
information needs should be prioritised in
terms of what will move you closer to a
commit/no-commit decision.

Some of the changes to information needs
will come from changes in requirements.
As noted earlier, AS development will
often start with a very partial specification
– the developer will have quite hazy ideas
of what the actual requirements are. It is
likely to take prototyping to achieve any
degree of clarity in these. Any change in
system requirements will introduce new
information requirements.

Once information needs are clear,
development can proceed to a model or
prototype. This is simplified, of course – in
a real system, especially early on, there will
be many models in parallel. These diverse



4th SEAS DTC Technical Conference - Edinburgh 2010

models will be at different tiers and will
focus on different components. For
example, we may start with be a whole-
system model represented as a MODAF
OV-1, some informal sketches of the
architecture of an AV and notes on the
capabilities required of some sensor. Later,
we may have a low-fidelity simulation
model of the AV in context and a highly-
detailed software-in-the-loop simulation for
the sensor. In practice, models and
prototypes need not be created anew each
cycle, and will in most cases be revisions of
models from earlier iterations.

Once we have at least one model, we can
analyse it for safety evidence and use that
to build a preliminary safety case. The
safety case on the first iteration may be no
more than a general strategy attached to a
list of hazards, whereas later cases may be
plausibly complete cases that just lack
sufficient confirmatory evidence.

The preliminary safety case provides a
means to assess the state of the project. The
case will identify safety risks and assurance
needs, and the developer should assess
these and identify what needs to be done:
they should identify unmanaged safety
risks and extant assurance deficits. It is not
necessary at this stage to have completed
the management and to have all the
assurance evidence, but it is important to
identify what can be done. Similarly, the
developer needs to identify any risk
mitigation or assurance that they cannot see
a way to perform.

When a developer assesses the risks they
don't know how to mitigate and assurance
deficits they don't know how to resolve,
they get an indication of their certification
risk and hence their overall project risk. At
the end of the iteration, the developer can
use this to decide whether and how to
proceed.

At the end of each spiral, if we are happy
with the residual safety risk we may

proceed as described above. Alternatively,
we can undertake risk-management
strategies:

 We may "rebaseline" - change our
project timescale and cost estimates

 We may change the project itself - the
overall concept, the project scope, or the
usage limits we require

 We may abandon the project (in AS
projects, there are likely to be novel
technologies and analysis methods that
we can "cannibalise" for future projects)

A similar step is identified in the ICM [9]
and in the project management guidance in
the recent statement of best practice for
software under Def Stan 00-56 [10].

Producing Evidence Throughout the
Lifecycle

Def Stan 00-56 has a hierarchy of evidence
types. Analytical evidence is favoured most
highly, with testing evidence being less
desirably and qualitative evidence (process,
personnel etc) evidence being favoured
least of all. This is a very simple
presentation, however – there are many
variables that need to be considered and all
evidence types have potential value.

A more sophisticated structure for software
evidence types can be found in [11]. In that,
Hawkins identifies a range of ways in
which evidence types and individual
instances of evidence types can differ.
When we are looking at evidence for the
safety of an AS (which includes software),
we can form a similar model.

Field Trials and Formal Methods

The first major type is field trials –
operating of the AS under realistic
conditions (although not actual operational
ones). Although these are not the most
favoured by 00-56, they are extremely
powerful in theory (see Alexander and



4th SEAS DTC Technical Conference - Edinburgh 2010

Kelly in [12] for some expansion of this
point). In particular, because they combine
the whole AS product with its real world
embodiment in a real-world environment
they have excellent potential to reveal
unwanted emergent behaviours. The quality
of the evidence they provide is exceeded
only by real operational use, although
because of the limitations of the physical
world it is sometimes difficult to acquire
that information (e.g. what was that
computer board doing just before it failed?)

A major problem with field trials, however,
is their extreme expense. They require huge
amounts of time and resources. A second
problem is risk (because the embodied
equipment is being used) and a third is the
practicality of actually doing the trials at all
(e.g. in the UK there is inadequate range
space for many UAV trials). Field trials
therefore have limited value in practice
because we cannot do anywhere near as
many as we would like. They are
necessary, but they cannot be used for all
our evidence. We must therefore explore
alternatives that can give us information
about whole-CAS behaviour in context
("mission-level behaviour") at less expense.

Similarly, formal methods for software
provide excellent confidence in their results
– they provide a strong answer to the
question “does this software meet its
specification?”. They are the quite different
to field trials in that they can rarely detect
that the specification is wrong in the first
place. We must therefore supplement them
with field trials or other methods that help
us to get to a specification that we have
confidence in.

There are a range of alternative evidence
sources. Here, we have concentrated on
simulation; for other sources, the reader is
referred to our SEAS DTC report [13].

There are three ways that alternative
sources can be used. One way is to have
them provide evidence directly (for

example, using formal methods to
demonstrate that a particular software
failure cannot occur). Another is to use
them to direct and focus our limited
capability to do field trials (for example,
using a constructive simulation to find
hazardous scenarios that should be
explored in field trials). A third way is to
create evidence using an alternative method
and use field trials to test and challenge the
evidence it produces, thereby creating
composite evidence that is more powerful
than either. This approach can provide
evidence that is more credible the
alternative could provide alone and far
broader in scope than could be afforded
using field trials entirely.

Simulation-Based Methods

By “simulation”, we refer to all computer
models that derive predictions of a system’s
behaviour by progressing the model
through time. There is some overlap with
the formal models discussed in the previous
section, but not all simulation models have
formal semantics or are amenable to model
checking.

There are many different scopes and
abstractions of simulation that can be useful
here. Perhaps the most valuable scope is
mission-level simulation – a computer
model that describes the behaviour of the
AS in an operating context that includes
simulated peers, outside entities and (where
applicable) hostile entities. This can be
carried out using several distinct
abstractions, for example:

 A very abstract simulation of the data
and command links between the
members of an AS group, which are
subjected to stimuli from pre-
programmed test sets (since this
simulation doesn’t have ongoing human
interaction, it is a constructive
simulation)



4th SEAS DTC Technical Conference - Edinburgh 2010

 A medium-fidelity simulation of AS
behaviour, including movement within a
3D space and explicit physical
communications (given terrain and
electromagnetic restrictions), which runs
simulations of various plausible
simulations using a server farm (using a
Monte Carlo approach to generate
random variations).

 An interactive simulator in which a large
number of personnel can take the roles
of the humans in the scenario and
interact with realistic models of the AS
(such an interactive simulation is often
described as a synthetic environment).

Within the scope of our current work, there
are two key roles for simulations –
prototyping and evidence gathering.

The use of simulation for prototyping is
well established. It is popular because it
doesn’t require strong commitment to
simulation validity – as with many PSSA
activities, a problematic lack of fidelity is a
project risk, not a safety risk. Prototyping
for AS may be particularly rewarding
because of problems of partial specification
and a general uncertainty about the best
operating concept. It may only be at the
prototyping stage that the interactions of
the AS’s diverse capabilities are fully
understood.

Once we reach the architecture stage, we
can exploit our increased knowledge to
explore the implications of different
architectures. Simulation has a key role
here in bringing together our concepts for
individual AS with our model of the
context that they occupy.

At the very least, we can build a simulation
context that represents our knowledge of
communication and responsibility as
captured by human role analysis (based on
techniques such as that described by Thoms
[14]) We can also exploit any knowledge
we have about networks between AS, and
between AS and humans.

Concentrating on the human aspect, it may
be possible to estimate operator workload
over time through modelling at this stage. It
may reveal how intended usage patterns
give rise to spikes in demands on the
operator. This will allow some scoping for
the number of AS per operator. Similarly,
we can use our knowledge of data networks
to find possible spikes in bandwidth needs.

The use of mission-level simulation for
evidence gathering is more unusual. In this
role, simulation is used to produce
confirmatory evidence of safety, much like
conventional testing or operating
experience is used. It is difficult to use in
this role because of concerns about the
validity of any given simulation – the less
valid the simulation, then the less
compelling the evidence. It may, however,
be the only option to resolve many
assurance deficits about how an AS will
actually behave when deployed – the
equivalent volume of field-testing will be
impossible.

Like the previous use of simulation for
prototyping, this use will help to solve the
environment sensitivity problem discussed
earlier. The simulation can embody the
accumulated knowledge about the
environment, and the simulation model of
the AS itself can show the AS’s response to
that environment.

The set of environmental factors to be
modelled, and the set of runs to perform
within the parameter ranges of the factors
that are implemented, must be derived from
something. One approach would be to use
an accident database such as that described
in [15] to derive the scenarios and the
parameters of concern, by picking on the
features that were implicated in the
accident sequence and modelling those. For
example, an accident sequence can be
repeated in an interactive simulator using
an AS in place of an inhabited vehicle.



4th SEAS DTC Technical Conference - Edinburgh 2010

Conclusions

We can conclude that the lifecycle needed
for an autonomous system is not radically
different than for a conventional system.
However, many activities are different, and
we need a different emphasis.

An iterative approach to AS safety based
on extensive exploration through
prototyping is of value and will make the
challenges of AS development more
tractable. Allowing evidence to be
generated through non-traditional model-
based activities will allow us to get the
necessary assurance even though we have
great problems in knowing whether the
(partial) specification we are using is a
good one.

For this to be practical however, extensive
further work is needed on validating formal
mission-level models, on deriving evidence
from non-formal simulation models, and on
continuously validating both kinds of
model using field trials and operational
experience.

References

[1] R. D. Alexander, M. Hall-May, T. P. Kelly,
"Certification of Autonomous Systems," in
Proceedings Of Proceedings of the 2nd
SEAS DTC Technical Conference,
Edinburgh, (2007).

[2] R. Alexander, N. Herbert, T. Kelly,
"Structuring Safety Cases for Autonomous
Systems," in Proceedings Of the 3rd IET
System Safety Conference, (2008).

[3] R. D. Alexander, N. J. Herbert, T. P. Kelly,
"Deriving Safety Requirements for
Autonomous Systems," in Proceedings Of
Proceedings of the 4th SEAS DTC
Technical Conference, Edinburgh, (2009).

[4] D. J. Pumfrey, "The Principled Design of
Computer System Safety Analyses," DPhil
Thesis, University of York, (1999).

[5] "Guidelines for Safety Analysis of Vehicle
Based Programmable Systems," The Motor

Industry Software Reliability Association,
(2007).

[6] SAE, "Aerospace Recommended Practice
4754 — Certification Considerations for
Highly-Integrated or Complex Aircraft
Systems," Society of Automotive
Engineers, (1994).

[7] Y. Papadopoulos, J. A. McDermid, "The
potential for a generic approach to
certification of Safety-critical systems in
the transportation sector," Reliability
Engineering and System Safety, vol. 63, pp.
47-66, (1999).

[8] "MoD Interim Defence Standard 00-56
Issue 4 - Safety Management Requirements
for Defence Systems," Ministry of Defence,
(2007).

[9] B. Boehm, J. A. Lane, "Using the
Incremental Commitment Model to
Integrate System Acquisition, Systems
Engineering, and Software Engineering,"
University of Southern California usc-csse-
2007-715, (2007).

[10] C. Menon, R. Hawkins, J. McDermid,
"Interim Standard of Best Practice on
Software in the Context of DS 00-56 Issue
4," Software Systems Engineering Initiative
SSEI-BP-000001, (2009).

[11] R. Hawkins, "Software Safety
Evidence Selection and Assurance,"
Software Systems Engineering Initiative
SSEI-TR-0000041, (2009).

[12] R. Alexander, T. Kelly, "Simulation
and Prediction in Safety Case Evidence," in
Proceedings Of the 26th International
System Safety Conference (ISSC '08),
(2008).

[13] R. Alexander, B. Gorry, T. Kelly,
"Safety Lifecycle Activities for
Autonomous Systems Development,"
University of York SEAS/TR/2009/2,
(2009).

[14] J. Thoms, "Understanding the impact
of Machine Technologies on Human Team
Cognition," in Proceedings Of the 4th SEAS
DTC Technical Conference, (2009).

[15] N. Storey, A.-M. Little, "An Internet-
Based Searchable Database of Air



4th SEAS DTC Technical Conference - Edinburgh 2010

Accidents," in Proceedings Of the 19th
Systems Safety Conference, (2001).

Acknowledgements

The work reported in this paper was funded
by the Systems Engineering for
Autonomous Systems (SEAS) Defence
Technology Centre established by the UK
Ministry of Defence.


